12 research outputs found

    Using metaheuristics to improve the placement of multi-controllers in software-defined networking enabled clouds

    Get PDF
    SDN is a model that separates the control and the data levels in an arrangement to enhance capability to program and configure the network in a more agile and efficient manner. Multiple controller modules have been used in the SDN engineering to empower programmable and adaptable configurations such as improving scalability and reliability. The distance and time calculations and other performance measures have to be considered in solving the Multi-Controller Position Problem (MCPP). This paper investigates the use of metaheuristic algorithms to build an MCPP mathematical model. Both the symmetric Harmony Search (HS) modelling and the Particle Swarm Optimization (PSO) algorithm are considered in this respect. Thus, our hybrid approach is proposed and known as Harmony Search with Particle Swarm Optimization (HSPSO) is applied and we compared the extracted results with the state-of-the-art techniques in the previous literature. Besides the development of the mathematical model, a simulation study has been done considering the relevant parameters including the link distance description and the access time between the SDN entities. The console simulation uses NetBeans with CloudsimSDN procedure files in the SDN-based cloud environment

    A Framework for QKD-based Electronic Voting

    Get PDF
    This paper deals with the security aspect of electronic voting (e-voting) by introducing quantum key distribution (QKD) to the e-voting process. This can offer an extremely high level of security that can be very beneficial for some significant e-voting tasks. Moreover, a framework for the integration of the QKD with the e-voting system is proposed. The Helios voting system, which is considered as one of the open-source and major voting systems, has been chosen for this integration. Investigation of the main design aspects of building a QKD-based e-voting system has been done. Thus, the expected advantages and limitations of the proposal are discussed and analyzed

    Survey on intrusion detection systems based on deep learning

    Get PDF
    Intrusion Detection Systems (IDSs) have a significant role in all networks and information systems in the world to earn the required security guarantee. IDS is one of the solutions used to reduce malicious attacks. As attackers always changing their techniques of attack and find alternative attack methods, IDS must also evolve in response by adopting more sophisticated methods of detection. The huge growth in the data and the significant advances in computer hardware technologies resulted in the new studies existence in the deep learning field, including intrusion detection. Deep learning is sub-field of Machine Learning (ML) methods that are based on learning data representations. In this paper, a detailed survey of various deep learning methods applied in IDSs is given first. Then, a deep learning classification scheme is presented and the main works that have been reported in the deep learning works is summarized. Utilizing this approach, we have provided a taxonomy survey on the available deep architectures and algorithms in these works and classify those algorithms to three classes, which are: discriminative, hybrid and generative. After that, chosen deep learning applications are reviewed in a wide range of fields of intrusion detection. Finally, popular types of datasets and frameworks are discussed

    Extension of SSL/TLS for Quantum Cryptography

    No full text

    Secure Data Computation Using Deep Learning and Homomorphic Encryption: A Survey

    No full text
    Deep learning and its variant techniques have surpassed classical machine algorithms due to their high performance gaining remarkable results and are used in a broad range of applications. However, adopting deep learning models over the cloud introduces privacy and security issues for data owners and model owners, including computational inefficiency, expansion in ciphertext, error accumulation, security and usability trade-offs, and deep learning model attacks. With homomorphic encryption, computations on encrypted data can be performed without disclosing its content. This research examines the basic concepts of homomorphic encryption limitations, benefits, weaknesses, possible applications, and development tools concentrating on neural networks. Additionally, we looked at systems that integrate neural networks with homomorphic encryption in order to maintain privacy. Furthermore, we classify modifications made on neural network models and architectures that make them computable via homomorphic encryption and the effect of these changes on performance. This paper introduces a thorough review focusing on the privacy of homomorphic cryptosystems targeting neural network models and identifies existing solutions, analyzes potential weaknesses, and makes recommendations for further research

    Valid Blockchain-Based E-Voting Using Elliptic Curve and Homomorphic Encryption

    No full text
    Improving the voting system has become a widely discussed issue. Paper-based elections are not safe because of the possibility of changing and adding ballots. Consequently, many countries use e-voting systems to ensure security, authenticity and time efficiency. Blockchain e-voting systems can be adopted to reduce fraud and increase voting access from home, especially in pandemics. This paper suggests a blockchain e-voting system that tackles two security and authentication issues. The security has been ensured using hybrid public-key cryptography; the voter information is encrypted using the regional election office elliptic public key, while the homomorphic public supreme election authority encrypts the vote. Using homomorphic encryption for voice enables the calculations of results as the authority encrypts it without revealing the vote itself. Authentication has been improved for home voting by a robust login system. This login system consists of two steps. In the first step, the voter enters the site using his unique QR code number scanned by webcam; in the second step, the system checks the voter's face using a face recognition system by web camera to be routed to the voting page. Voting public keys are also authenticated using a digital certificate schema. The system has been tested to show its efficiency and suitability in block establishment time and the encryption and key generator randomness using NIST tests.&nbsp

    Using Metaheuristics (SA-MCSDN) Optimized for Multi-Controller Placement in Software-Defined Networking

    No full text
    The multi-controller placement problem (MCPP) represents one of the most challenging issues in software-defined networks (SDNs). High-efficiency and scalable optimized solutions can be achieved for a given position in such networks, thereby enhancing various aspects of programmability, configuration, and construction. In this paper, we propose a model called simulated annealing for multi-controllers in SDN (SA-MCSDN) to solve the problem of placing multiple controllers in appropriate locations by considering estimated distances and distribution times among the controllers, as well as between controllers and switches (C2S). We simulated the proposed mathematical model using Network Simulator NS3 in the Linux Ubuntu environment to extract the performance results. We then compared the results of this single-solution algorithm with those obtained by our previously proposed multi-solution harmony search particle swarm optimization (HS-PSO) algorithm. The results reveal interesting aspects of each type of solution. We found that the proposed model works better than previously proposed models, according to some of the metrics upon which the network relies to achieve optimal performance. The metrics considered in this work are propagation delay, round-trip time (RTT), matrix of time session (TS), average delay, reliability, throughput, cost, and fitness value. The simulation results presented herein reveal that the proposed model achieves high reliability and satisfactory throughput with a short access time standard, addressing the issues of scalability and flexibility and achieving high performance to support network efficiency

    Multi-Controllers Placement Optimization in SDN by the Hybrid HSA-PSO Algorithm

    No full text
    Software-Defined Networking (SDN) is a developing architecture that provides scalability, flexibility, and efficient network management. However, optimal controller placement faces many problems, which affect the performance of the overall network. To resolve the Multi-controller SDN (MC-SDN) that is deployed in the SDN environment, we propose an approach that uses a hybrid metaheuristic algorithm that improves network performance. Initially, the proposed SDN network is constructed based on graph theory, which improves the connectivity and flexibility between switches and controllers. After that, the controller selection is performed by selecting an optimal controller from multiple controllers based on controller features using the firefly optimization algorithm (FA), which improves the network performance. Finally, multi-controller placement is performed to reduce the communication latency between the switch to controllers. Here, multiple controllers are placed by considering location and distance using a hybrid metaheuristic algorithm, which includes a harmonic search algorithm and particle swarm optimization algorithm (HSA-PSO), in which the PSO algorithm is proposed to automatically update the harmonic search parameters. The simulation of multi-controller placement is carried out by the CloudsimSDN network simulator, and the simulation results demonstrate the proposed advantages in terms of propagation latency, Round Trip Time (RTT), matrix of Time Session (TS), delay, reliability, and throughput

    Multi-Controllers Placement Optimization in SDN by the Hybrid HSA-PSO Algorithm

    No full text
    Software-Defined Networking (SDN) is a developing architecture that provides scalability, flexibility, and efficient network management. However, optimal controller placement faces many problems, which affect the performance of the overall network. To resolve the Multi-controller SDN (MC-SDN) that is deployed in the SDN environment, we propose an approach that uses a hybrid metaheuristic algorithm that improves network performance. Initially, the proposed SDN network is constructed based on graph theory, which improves the connectivity and flexibility between switches and controllers. After that, the controller selection is performed by selecting an optimal controller from multiple controllers based on controller features using the firefly optimization algorithm (FA), which improves the network performance. Finally, multi-controller placement is performed to reduce the communication latency between the switch to controllers. Here, multiple controllers are placed by considering location and distance using a hybrid metaheuristic algorithm, which includes a harmonic search algorithm and particle swarm optimization algorithm (HSA-PSO), in which the PSO algorithm is proposed to automatically update the harmonic search parameters. The simulation of multi-controller placement is carried out by the CloudsimSDN network simulator, and the simulation results demonstrate the proposed advantages in terms of propagation latency, Round Trip Time (RTT), matrix of Time Session (TS), delay, reliability, and throughput
    corecore